欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 初二教案

初二数学一次函数教案 4篇 八上数学一次函数教学

时间:2024-02-13 11:11:38 初二教案

  下面是范文网小编分享的初二数学一次函数教案 4篇 八上数学一次函数教学,欢迎参阅。

初二数学一次函数教案 4篇 八上数学一次函数教学

初二数学一次函数教案 1

  一、学生起点分析

  八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.

  二、教学任务分析

  《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.

  为此本节课的教学目标是:

  1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.

  2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.

  3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.

  4.理解一次函数的代数表达式与图象之间的一一对应关系.

  教学重点是:

  初步了解作函数图象的一般步骤:列表、描点、连线.

  教学难点是:

  理解一次函数的代数表达式与图象之间的一一对应关系.

  三、教学过程设计

  本节课设计了七个教学环节:

  第一环节:创设情境引入课题;

  第二环节:画一次函数的图象;

  第三环节:动手操作,深化探索;

  第四环节:巩固练习,深化理解;

  第五环节:课时小结;

  第六环节:拓展探究;

  第七环节:作业布置.

  第一环节:创设情境引入课题

  内容:

  一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?

  我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

  目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.

  效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.

  第二环节:画正比例函数的图象

  内容:首先我们来学习什么是函数的图象?

  把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).

  例1请作出正比例函数y=2x的图象.

  第三环节:动手操作,深化探索

  内容:做一做

  (1)作出正比例函数y= 3x的图象.

  (2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.

  请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.

  (1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?

  (2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?

  (3)正比例函数y=kx的图象有什么特点?

  明晰

  由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的`,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.

  议一议

  既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?

  因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.

  4.3一次函数的图象:同步测试

  14若直线经过第一.二.四象限,则k.b的取值范围是( ).

  A.k>0,b>0 B.k>0,b<0

  C.k<0,b>0 D. k<0,b<0

  2.已知一次函数y=3-2x

  (1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;

  (2)从图像看,y随着x的增大而增大,还是随x的增大而减小?

  (3)x取何值时,y>0?

  3.已知一次函数y=-2x+4

  (1)画出函数的图象.

  (2)求图象与x轴、y轴的交点A、B的坐标.

  (3)求A、B两点间的距离.

  (4)求△AOB的面积.

  (5)利用图象求当x为何值时,y≥0.

  《函数的图象》课后练习

  1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()

  A.y=1.5(x+12)(0≤x≤10)

  B.y= 1.5x+12(0≤x≤10)

  C.y=1.5x+10(x≥0)

  D.y=1.5(x-12)(0≤x≤10)

初二数学一次函数教案 2

  学习目标:

  1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;

  2、能熟练应用平行线的性质公理及定理。

  一、试一试

  自学指导:平行线性质公理:两直线平行,同位角相等

  1、 思考下列各题,你能利用平行线性质公理解决它们吗?

  2、 充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。

  (1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2

  由此得平行线性质定理1:

  (2) 已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的定理证明∠1+∠2=180°

  由此得平行线性质定理2:

  二、练一练

  1、已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b

  (1)求证:a∥c

  (2)请将(1)题证得的结论用一句话总结出来

  2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。

  四、记一记

  1、两直线平行的性质公理及两个性质定理;

  2、平行线的性质补充结论

  (1)垂直于两平行线之一的直线必垂直于另一条直线

  (2)夹在两平行线之间的平行线段相等;

  (3)两条平行线间的`距离处处相等;

  (4)经过直线外一点,有且只有一条直线和已知直线平行;

  (5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补

  B组:请在补充结论中选择你感兴趣的进行证明:

初二数学一次函数教案 3

  一、读一读

  学习目标:

  1、熟练证明的基本步骤和书写格式;

  2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。

  二、试一试

  自学指导:平行线判定公理: 同位角相等,两直线平行

  1、自学教材P229-231,学完后合上课本完成下列各题:

  (1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b

  由此得,平行线判定定理1: ;

  (2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的'判定定理证明a∥b

  由此得,平行线判定定理2: .

  三、练一练

  1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决

  2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°

  求证:a∥b 你有几种证明方法?请选择其中两种方法来证明

  四、记一记:

  证明命题的一般步骤:

  (1)根据题意画出图形(若已给出图形,则可省略)

  (2)根据题设和结论,结合图形,写出已知和求证;

  (3)经过分析,找出已知退出求证的途径,写出证明过程;

  (4)检查证明过程是否正确完善。

初二数学一次函数教案 4

  一、创设情境

  问题画出函数y=的图象,根据图象,指出:

  (1)x取什么值时,函数值y等于零?

  (2)x取什么值时,函数值y始终大于零?

  二、探究归纳

  问一元一次方程=0的解与函数y=的图象有什么关系?

  答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.

  问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?

  答不等式>0的.解集就是直线y=在x轴上方部分的x的取值范围.

  三、实践应用

  例1画出函数y=-x-2的图象,根据图象,指出:

  (1)x取什么值时,函数值y等于零?

  (2)x取什么值时,函数值y始终大于零?

  解过(-2,0),(0,-2)作直线,如图.

  (1)当x=-2时,y=0;

  (2)当x<-2时,y>0.

  例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.

  解设y1=2x-5,y2=-x+1,

  在直角坐标系中画出这两条直线,如下图所示.

  两条直线的交点坐标是(2,-1),由图可知:

  (1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;

  (2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.

  四、交流反思

  运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.

  五、检测反馈

  1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?

  2.画出函数y=3x-6的图象,根据图象,指出:

  (1)x取什么值时,函数值y等于零?

  (2)x取什么值时,函数值y大于零?

  (3)x取什么值时,函数值y小于零?

  3.画出函数y=-0.5x-1的图象,根据图象?